
    TImageFX Component
Properties Methods Using TImageFX Additional Information.

Description
TImageFX is a Delphi component which allows you to specify 1 of 20 special effects when displaying a bitmap file. 
These Effect properties can be grouped in 4 categories:

Explode: image starts in the center of the image area as a small point and grows in all directions until it fills the 
image area. Three explode effects: ViewExplode, ViewZoomIn, ViewZoomOut.

Implode: image starts as full sized and shrinks to a point in the center of the image then disappears. Three implode 
effects: HideImplode, HideZoomIn, HideZoomOut.

Wipe: image starts from one of its sides (top, bottom, left or right) and grows to the opposite side. Twelve wipe 
effects: Wipe____Roll, Wipe____Slide, Wipe____Stretch. Fill in the blanks with Left, Right, Up or Down.

Curtain: image starts from left and right or top and bottom and grows toward the center from two directions. Two 
curtain effects: SideCurtainRoll, VertCurtainRoll.

Run the example file MMFX.EXE or compile MMFX.DPR to see examples of these effects. If your ImageFX.DCU only
shows effects when Delphi is running, you have the demo version. Get the full VCL from CompuServe—GO SWREG 
and register # 11822.

Be sure to read Using TImageFXfor specific information about using the component in design mode!



 Properties

Effect

EffectRate

EffectDelay

Drawing

For all other properties, see online help for TPaintBox.



 Methods

LoadFromFile

Show



    Using the TImageFX component

To use TImageFX, place one on a form, select an Effect, set EffectRate and EffectDelay to non-zero values and add 
the following 2 lines to a relevant place in your application:

ImageFX1.LoadFromFile('filename.bmp');
ImageFX1.Show;

TImageFX automatically sizes itself to fit the bitmap it contains. The upper left corner (Left and Top properties) 
determine the placement of the displayed bitmap. The displayed bitmap is buffered so there is no flicker in the image 
as it displays an effect.
Designing a form with TImageFX
When you close and reopen a project with a TImageFX component, you may not be able to select the component 
with the mouse. TImageFX is not a windowed control and, in design mode, has a dashed placement window drawn. 
To select the component, choose it in the Object Inspector drop down selection list, then, from the Edit menu, choose
Bring to Front. Alternately, select the form and tab through the components until the TImageFX is selected, then 
choose Edit: Bring to Front.
If an effect does not seem to Show:
When you use ViewExplode, HideImplode and Wipe___Roll to paint a bitmap over itself, the effect will not be visible. 
This is because the bitmap is gradually being replaced by an exact copy of itself, so no change is visible. Use a Hide 
effect first (which leaves no bitmap showing) or show a different bitmap with no effect before using these effects.

Setting TImageFX.Visible := False; terminates an effect in progress and makes the component invisible.

See also:

Effects property

EffectRate property

EffectDelay property

Drawing property

LoadFromFile method

Show



 Effect property
Declaration
TEffect = (HideImplode, HideZoomIn, HideZoomOut,

ViewExplode, ViewZoomIn, ViewZoomOut,
WipeRightRoll, WipeRightSlide, WipeRightStretch,
WipeLeftRoll, WipeLeftSlide, WipeLeftStretch,
WipeUpRoll, WipeUpSlide, WipeUpStretch,
WipeDownRoll, WipeDownSlide, WipeDownStretch,
SideCurtainRoll
VertCurtainRoll);

Example: ImageFX1.Effect := ViewExplode;
The Effect property determines how a bitmap is drawn when it is displayed. The selected effect is drawn flicker free at
the size of the bitmap loaded via the LoadFromFile method. The Left Top corner of the TImageFX component 
determines bitmap placement.

HideImplode: normal sized image gradually disappears from its outer perimeter to its center

HideZoomIn gets smaller and smaller until gone with perimeter bands still there, then disappears

HideZoomOut expands from center until center few pixels fill the image, then disappears

ViewExplode normal sized image is exposed in increments from a point in center until entire image shows

ViewZoomIn enlarged image of a few large pixels filling image area shrinks until normal sized image shows

ViewZoomOut small sized image grows from a point in center of image area until normal sized image fills area

WipeRightRoll normal sized image gradually appears from left of image area and fills to the right

WipeRightSlide “squished” image expands from left to right of image area until full

WipeRightStretch enlarged image gradually shrinks from left to right until normal image fills area

WipeLeftRoll same as WipeRightRoll, opposite direction

WipeLeftSlide same as WipeRightSlide, opposite direction

WipeLeftStretch same as WipeRightStretch, opposite direction

WipeUpRoll same as WipeRightRoll, bottom to top rather than left to right direction

WipeUpSlide same as WipeRightSlide, bottom to top rather than left to right direction

WipeUpStretch same as WipeRightStretch, bottom to top rather than left to right direction

WipeDownRoll same as WipeUpRoll, opposite direction

WipeDownSlide same as WipeUpSlide, opposite direction

WipeDownStretch same as WipeUpStretch, opposite direction

SideCurtainRoll normal sized image appears gradually from left and right sides, fills horizontally to center

VertCurtainRoll normal sized image appears gradually from top and bottom, fills vertically to center



 EffectRate property
Declaration
property EffectRate: TRateRange;
TRateRange: 0..100;

Sets the percent of the bitmap which is drawn on each redraw update. Valid values are any integer between 0 and 
100; higher values make the effect happen faster, lower values give a smoother effect. Generally, a value of 1 to 20 
gives a nice effect; 1 gives 100 redraws and 20 gives 5 redraws to complete the image.

A value of 0 halts the effect but the effect trigger continues to occur every EffectDelay period until EffectRate is set to 
a non-zero value and the effect is completed.



 EffectDelay property
Declaration
property EffectDelay: TDelayRange;
TDelayRange: 0..6000;

Sets the time delay between each redraw update. Valid values are numbers between 0 and 6000. The higher the 
value the slower the effect. Generally, a value of 1 to 10 gives a nice effect; 1 gives 1/100 second between redraws 
and 10 gives 1/10 second between redraws to complete the image; 6000 gives 60 seconds between update redraws.

A value of 0 halts the effect, stops the redraw delay timer and displays the most recent image (if any). If the effect is 
halted with part of an image displayed, the partial image remains.



 Drawing property
Declaration
property Drawing: Boolean;

Run-time and read only. True when an effect is being drawn, otherwise False. Allows an application to monitor when 
an effect is underway and when it is complete.



 LoadFromFile method
Declaration
procedure LoadFromFile(FileName: string);
Description
Loads a Windows bitmap (.BMP) file into the component. File is not displayed until EffectDelay and EffectRate are set
to non-zero values and the Show is called.



 Show method
Declaration
procedure Show;
Description
Starts the process of displaying a bitmap with the selected Effect. Completion of the effect can be determined by 
monitoring the Drawing property.

Show has no effect if Visible = False;



 TImageFX Component for Delphi ©1996 by Beond Technology Corp. All Rights 
Reserved

Design Only version

If your TImageFX only works in design mode, you can get the fully functional version from CompuServe's shareware 
forum (GO SWREG and search for components by 76640,2664 or register number 11822) or from:

Beond Technology Corp.
15370 W. Cherrywood Lane
Libertyville, IL 60048-1435
(708) 918-7750 (V/F)
CompuServe: 76640,2664
Internet: brianlow@mcs.com

Limited Warranty

Because you can completely evaluate it before you buy it, this software has no warranty whatsoever. This non–
warranty is in lieu of any other warranty, expressed or implied, including the implied warranties of merchantability and 
fitness for a particular purpose. In no event will Beond Technology Corp. be liable to you for damages, including any 
loss of profits, lost savings, or other incidental or consequential damages arising out of your use of or inability to use 
the software.

Support

The best support is via e-mail…send a clear question and you get a clear answer. Vague questions will be answered 
as well as possible. If you find a bug, e-mail a description and an example app which shows what’s going wrong. If 
you want a modified version and are willing to pay for development or want to buy source code, e-mail your 
requirements or call.




